Atlas of Nanotechnology

Foothill DeAnza Colleges Nanotechnology Program

Atlas of Nanotechnology

- An Atlas of Nanoscience and Nanoskills
- Six separate maps
 - Topic map of the domain (terms)
 - Knowledge map (what people know) = K
 - Skill map (what people do) = S
 - Industry map (companies and IP)
 - Course map of nanoscience (who teaches what)
 - Learning object map (SCORM and LOM)
- All six maps *interlinked* through *K&S attributes*

Nanoscience Topic Maps

- Topic maps are a 'network of topics' that are interconnected in an ontology
- Nanoscience topic maps includes the top level subjects (physics chemistry, biology, materials science, electronics)
- And also include the *'nano specific' terminology* – self assembly, carbon nanotubes, molecular manufacturing

Connecting Topic Maps

- Nano terminology
 - Nano ontology (categories)
 - Nano taxonomy (terminology)
- Nano 'work' (skills)
- Nano courses (knowledge)
- Nano curriculum (course objects)
 - Courses contain K&S learning outcomes

Topic maps will eventually link **work skills** with **learning outcomes**

What Problems Are We Solving?

- Pathways for intelligent workforce development
- Pathways for formal nanotech education
- Are two courses similar?
- Recognizing 'aggregated learning outcomes' from disparate institutions

Knowledge Map

- What are the *key concepts* that students and working professionals need to know?
- These are both *prerequisites* to learning new concepts in nanoscience, as well as *key learning outcomes* from coursework
- Knowledge map is connected to 'courses' through the *knowledge attribute* in KSA

Skill Map

- What *skills* are needed to do *work* in nanoscience? What *tasks* are practiced in the course of 'doing' nanotechnology?
- Skill map is derived from *interviews* with industry and nanoscience workers
- Skill map is connected to 'courses' map through the skill attribute of KSA schema

Course Map

- Course map is a comprehensive list of courses (starting in CA Bay Area), their descriptions and KSA learning outcomes
- They appear in engineering, physics, chemistry, materials science, electronics
- Each course has a knowledge and skill (KSA) attribute for *each* learning outcome

IF

Industry Map

- Companies and what they do

 Core technology / IP
- Names of key individuals in the company
- Job positions (and typical positions)
 - Links from jobs to knowledge and skills
 - What K&S is required for nanoskilled work?
- Products manufactured or in R&D
 - Links into the future nanodevices topic map

Industry Map

Companies have Workers who do Work and need Knowledge and Skills

Putting it All Together

- Job objects are divided into critical work functions (WF) a series of discrete tasks
- Each task has a requisite knowledge and skill (K&S) requirement (typically education and experience on a resume)
- Career certificates should have courses with *K&S learning outcomes* that map into the critical WF's needed in industry

Mapping Work Skills to KSA Learning Outcomes

NSF Proposal Oct / 2004

Understanding Nanoskills

- Map of companies and competencies
- Include map of job title and work function
 - What 'work' do people do? (WF)
 - What *knowledge* (K) do they need?
 - What *skills* (S) do they need?
- Link K and S from above to either LOs from course objects, or learning objects
- *Remedial* learning and / or *fast skilling*

Linking XML Topic Maps

NSF Proposal Oct / 2004

KSA From Job Objects

KSA From Course Objects

Learning Object Map

- Map of free standing learning objects
- Eventually will be 'Web deployed' – SCORM standards / LOM (KSA) schema
- Each 'object' will have three attributes
 - Knowledge
 - Skills
 - Assessment
- Navigate a learning-space for a K&S

Learning Object Map

Companies have Workers who do Work with *specific* Knowledge and Skills

Curriculum Course Map

Concept by Ted Kahn

Nanotechnology **emerges** from **new associations** of **nanoscale phenomena** in the core **subject areas**

Are Two Courses 'Similar'?

- Thin Film Processes
 MatSci department
- Solid State Physics
 Physics department
- Colloids and Surfaces
 - MatSci department
- Organic Chemistry
 - Chemical engineering
- Intro to Semiconductors
 - Electrical engineering

- Intro to Thin Films
 Engineering
- Physics of Solids
 MatSci department
- Surface Chemistry
 - Chemistry
- Organic Materials
 - MatSci department
- Semiconductor Materials
 - MatSci department

There are over 500 nano-related courses within 50 miles of FHDA

Learning Outcomes as Interchangeable Parts

Knowledge Skills Abilities

Declarative component of learning

Procedural component of learning

Cognitive or 'deep learning'

Learning Outcome(s)

Course Objects as Interchangeable Parts

Learning Outcome(s) Course A Learning Outcome(s) Course B

Aggregated Learning Outcomes

Logical Certificates

- Concept map nano outcomes

 Materials, nano-bio, nano-opto, etc.
- Map (KSA) nano topics to classes
 Locate courses that *teach nano topics*
- Map (organize) classes into outcomes
 Self-assemble logical certificate tracks
- Nano-certificate = nano-topic roadmap

Logical Certificate Map

It is **probable**, not just **possible**, that we are **already** teaching the **principles of nanotechnology**, but we haven't **organized it!**

Timeline / Resources

- Atlas of Nanotech being built by FHDA team in conjunction with NASA / SRI
- Draft Atlas to be shown at SRI / NASA workshop at the end of March 2005
- Topic map will need a *grant* to expand beyond 2,000 terms and full data model
- XML topic map started in Summer 2005
- **NSF proposal** for funding in Fall 2005